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Onset of unidirectional pulse propagation in an excitable medium with asymmetric heterogeneity
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Heterogeneity is one of the most important and ubiquitous types of external perturbations in dissipative
systems. To know the behaviors of pulse waves in such media is closely related to studying the collision
process between the pulse and the heterogeneity-induced-ordered pattern. In particular, we focus on unidirec-
tional propagation of pulses in a medium with an asymmetric bump heterogeneity. This topic has attracted
much interest recently with respect to potential computational aspects of chemical pulse propagation as well as
with respect to pulse propagation in biological signal processing. We employ a three-component reaction-
diffusion system with one activator and two inhibitor species to illustrate these issues. The reduced dynamics
near a drift bifurcation describes the phenomena in the full partial differential equations by ordinary differential
equations. Such a reduced dynamics is able to capture unidirectional propagation properties of pulses near an
asymmetric heterogeneity in a qualitatively correct way. A remarkable feature is that such unidirectional
behavior is linked to the imperfection of global bifurcation structure and the resulting asymmetric locations of

critical points.
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I. INTRODUCTION

Spatially localized moving patterns such as traveling
pulses and fronts in one dimensions and traveling spots in
higher dimensions are fundamental objects arising in many
dissipative systems and display a large variety of dynamical
behaviors [1-5]. The propagation manner of such waves in
heterogeneous media is of great relevance to the understand-
ing of information exchange in chemical and biological sys-
tems. Stationary and oscillatory pinning as well as reflection
and diffraction by heterogeneities have been reported [6-19].
Related phenomena occur upon sudden change in the geom-
etry in two or three dimensions: fronts and pulses may be
reflected near exits of narrow channels [20,21] because sud-
den extensions lead to wave curvature and effective changes
in the diffusion constant [22]. A variety of outputs is ob-
served when wave encounters a heterogeneity typically de-
pending on quantities such as the height and width of the
obstacle. Possible behaviors of pulses and other waves are
rebound, stationary, and oscillatory pinning at the heteroge-
neity as well as penetration. A remarkable observation is that
the full partial differential equation (PDE) dynamics can be
reduced to finite-dimensional ordinary differential equation
(ODE) dynamics near a drift bifurcation. An analogous ap-
proach with an ODE based reduced dynamics has been given
for the behavior of periodic traveling patterns in media with
broken symmetry [23,24]. Recently, considerable effort has
been devoted to analyze the computational potential of pulse
waves in chemical logic and switching devices [25-28]. In
such reaction-diffusion processors, data are represented by
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concentration profiles of chemical species and computation
is performed by propagation and interaction of pulse waves.
One particularly exciting perspective comes from the dra-
matic increase in research on unconventional computing ar-
chitectures by using traveling chemical waves in a sensible
and programmable way. A few studies have provided inter-
esting examples of chemical diodes obtained by controlling
the geometrical arrangement of media, in which the rectifi-
cation of chemical waves was observed in light-sensitive
Belousov-Zhabotinsky medium with asymmetric light illu-
mination [29-31]. The spatial heterogeneity in the light in-
tensity distribution is crucial to determine the direction of
unidirectional propagation even in one-dimensional system
[32]. Earlier work on simulations of chemical pulses on spa-
tially heterogeneous catalytic surfaces has also revealed uni-
direction propagation [33,34]. Although numerous experi-
ments have been carried out, the mechanism of how the
asymmetry of heterogeneity causes the unidirectional motion
is not well understood. Resolution of these issues may also
add to the understanding of the processing of biological sig-
nals such as action potentials in the brain, which are typical
examples of reaction-diffusion pulses. In many biological
systems, it is crucial how reaction-diffusion waves react to
external perturbations such as heterogeneous concentrations
of activating factors [35-39].

In this paper, we focus on dynamics of traveling pulses
that encounter heterogeneities of asymmetric bump type for
a three-component reaction-diffusion system with one acti-
vator and two inhibitors. Especially we study how the asym-
metry of heterogeneity causes unidirectional pulse propaga-

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.79.046205

TERAMOTO et al.

3600 4000 3600

5

1200 1200 1200

3000 | I 3600 3600

1200 1200 1200

FIG. 1. The typical spatiotemporal patterns of unidirectional
pulse behaviors for PDE system are depicted in (a) unidirectional
pinning of pulses coming from the left-side end for €=0.10, (b)
unidirectional oscillatory pinning from the right for e~0.064, (c)
rectification to the left-side end for €=0.05, (d) rectification to the
right for e=-0.05, (e) unidirectional pinning from the right for €
=-0.10, and (f) unidirectional oscillatory pinning for e=-0.20. In
this paper, we focus on the collision process between traveling
pulses and defects induced by a bump heterogeneity. Interactions
between pulses are neglected in the analysis described below. We
employ the following parameter values d=0.15, kf=—6.50, ko
=20, k=10, k4=8.5,(D,,D,,D,)=(0.9%X107*,1.0x1073,1.0
% 1072), and 7=40.0.

tion phenomena as the ones surveyed in Fig. 1. Here such an
asymmetry is imposed by different slopes at both ends of the
bump. Since we introduce the heterogeneity in an additive
way, the uniform background state is not a solution anymore
and is replaced by a nonuniform stationary pattern, which we
henceforth call defect. Such a defect is not uniquely deter-
mined for a given heterogeneity. In fact, there are many can-
didates even for the simple heterogeneity of jump type [40].
In this paper, we employ the defect with smallest amplitude
as the new background state. When the pulse encounters the
bump heterogeneity, a variety of outputs, including pinning,
rebound, and penetration, is observed. Transitions among
those outputs occur as the width and the height of the bump
are varied. These behaviors can be regarded as a result of
collision between a pulse and a defect. The method devel-
oped in Refs. [41-44] for symmetric obstacles is employed
here in order to clarify the underlying mechanisms also for
asymmetric heterogeneities. The basic method employed in
those references is to find the origin of the sorting mecha-
nism, by which the output can be controlled based on the
information of the local dynamics near the so-called scattors,
i.e., a special class of unstable solutions which link input to
output at the collision point [40]. A reduction from PDE to
finite-dimensional ODEs is also possible near the singularity,
and the resulting system inherits most of the essential dy-
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namics from the original PDE. It turns out that there are
various types of heterogeneity-induced localized patterns,
i.e., defects around the bump heterogeneity, which are cap-
tured by the critical points of reduced ODEs. The basin of
each critical point and the switching among those basins de-
pending on parameters explain all the transitions of the origi-
nal PDEs; in fact, various bifurcations such as Hopf and
homoclinic ones cause the onset of those transitions. The
reduction method permits us to clarify the mathematical
structure controlling the dynamic transitions in a precise
way, especially the asymmetry of bump causes, for instance,
the imperfection of the bifurcation structure and the transi-
tion from a heteroclinic to a homoclinic one, resulting in
unidirectional motions.

The paper is organized as follows. In Sec. II, we introduce
our model system and the precise form of bump heterogene-
ity. A reduction to ODEs and comparison of phase diagrams
between PDE and ODE dynamics are presented. In Sec. III,
we show that the reduced ODEs clarify how dynamic tran-
sitions occur depending on the width and height of the bump.
The colliding dynamics between pulses and defects for sym-
metric case was extensively studied for both moderate and
steep bumps [45,46], in which we discussed three types of
underlying mechanisms causing a variety of input—output re-
lation and their transitions in heterogeneous media. The first
one is simply due to the local bifurcation of attractors, for
instance, a fixed point of ODEs is switched to a limit cycle,
i.e., the Hopf bifurcation changes a stationary pulse into an
oscillatory pinning behavior. The second is that the global
bifurcation of the limit cycle is responsible for the onset of
the pinning—depinning transition of pulse behaviors. In fact,
such a global bifurcation typically accompanies a saddle-
node bifurcation and its unstable part of the branch blocks
the entering of orbits into the pinning state when the param-
eter passes the global bifurcation point.

Third, it turns out that hidden unstable patterns located at
infinity and their stable and unstable manifolds play crucial
roles to direct the orbital behaviors in heterogeneous media.
Section III highlights how those mechanisms are changed or
modified for an asymmetric heterogeneity. One main goal is
to understand the onset of unidirectional behaviors that do
never occur in the symmetric case. The outcome can be sum-
marized by emphasizing three crucial points: imperfection of
the bifurcation structure, the change in a global bifurcation
from a heteroclinic to a homoclinic one, and order in which
Hopf and global bifurcation points appear. All behaviors en-
countered in simulation of the PDE are qualitatively repro-
duced by the reduced ODE dynamics and are therein orga-
nized by the aforementioned three guiding facts.

In this paper we concentrate on the study of the reduced
ODE dynamics for the narrow bump case with three critical
points. As the width is increased, the number of critical
points is increased from three to five, and there occurs a
subtle bifurcation of the limit cycles emanated from multiple
critical points. In fact, they form trouserslike structure with
respect to the bump height, in which a figure-of-eight orbit
appears as in Refs. [45,46]. In the Appendix, we will show
the attractor switching behavior obtained for the wide bump
case and discuss about imperfection of the figure-of-eight
(double homoclinic, ambiclinic) bifurcation caused by an
asymmetry.

046205-2



ONSET OF UNIDIRECTIONAL PULSE PROPAGATION...

II. MODEL AND THEORY
A. Three-component reaction-diffusion system

In order to investigate the dynamics of traveling pulses in
heterogeneous media, we employ the following three-
component reaction-diffusion system, which was studied as a
qualitative model of gas discharge phenomena [2,4,47],

U =Dy A u+kou— 1 —kyv — kygw + ky,
w,=D,Av+u-v,

w,=D,Aw+u—-w, (1)

where A is the Laplacian, u=u(t,x), v=v(t,x), and w
=w(z,x) depend on time ¢ and xe R, ky,ky,ks and k, are
kinetic parameters, and 7 and the diffusion coefficients
D,,D,,D,, are positive constants.

System (1) can be regarded as a generalized FitzHugh-
Nagumo type of model, namely, it is a representative model
which supports various spatially localized waves, especially
traveling pulses and spots in one-, two-, or three-spatial di-
mensions; in fact, the second inhibitor w is indispensable for
the coexistence of multiple number of stable traveling spots
in two- and three-dimensional spaces. The role of the first
inhibitor v in two or three dimensions is to stabilize the back
end of a traveling spot, while the second inhibitor w prevents
a lateral growth of a traveling spot into a double pair of
spirals. The latter behavior is typical for two-component
activator-inhibitor systems. System (1) is a simple and a pro-
totypical model for the study of interaction among moving
particle patterns in dissipative systems. It was studied in
[40-42] under the parameter setting used here that Eq. (1)
becomes an excitable system with unique stable equilibrium
point and has a stable traveling pulse. The velocity of the
pulse is an increasing function of k;.

In this study, we consider the pulse dynamics in asymmet-
ric bump-shaped inhomogeneous media as shown in Fig. 2,
especially how such dynamics depend on the height € and
the width d of bump. We introduce the following asymmetric
heterogeneity function x(x,d) to parameter k; as k;(x)=k}
+ex(x,d), where

1 1
+ —
1+ e—yL(x+d/2) 1+ e+yR(x—d/2)

x(x.d) = L, (2)

and e=k)—k¥. Numerically, we can set k(—1/2)=k(l/2)
=k1f and k1(0)=k11” for an appropriate system size. The pa-
rameters ¥R control the steepness of the slopes around the
left and right jump points of x=*d/2, respectively. Note
that the above heterogeneity satisfies the relation y(—x,—d)
=—x(x,d). An advantage of functional form (2) is that the
left-right reversal form of the heterogeneity can be obtained
by changing the sign of d and € at the same time. Hereafter,
we set to (y*,%)=(100.0,1000.0), i.e., right is steeper than
left.

After we introduce spatial heterogeneity to the kinetic co-
efficient of an additive type, the uniform state is no more a
background state for the resulting system, several inhomoge-
neous steady states are observed for each (d, €). In this paper,

PHYSICAL REVIEW E 79, 046205 (2009)

we employ the smallest defect in amplitude as the back-
ground state for the heterogeneous system. When a stable
traveling pulse approaches the bump-shaped regime, it col-
lides with small defects, so our problem can be regarded as
the collision problem between the pulse and defect.

The symmetric bump case (7*=9) was studied in the
previous paper [40,45,46] in which left- and right-going trav-
eling pulses have the same behaviors. This is not the case for
the asymmetric case. It contains a variety of unidirectional
behaviors, including rectification and unidirectional pinning
behaviors, as in Fig. 1 in which the bump height € is de-
creased. Figure 1(c) shows that rebound of a pulse at the
steep side of the bump domain is found for a small absolute
€ and the counterpart at the moderate side is penetration. The
resulting one-way traffic of pulse propagation is sometimes
called a rectification phenomenon. When the sign of € is
changed, i.e., bump or dent, the left-right reversal behavior
is obtained as shown in Fig. 1(d). Figures 1(a), 1(b), and 1(e)
show the unidirectional pinning behaviors, in which a pulse
coming from one side is trapped around bump domain, while
that from the another side is rebound or penetration. The
pinning direction depends on the e value. As depicted in Fig.
1(f), the unidirectional oscillatory pinning behavior appears
by still decreasing €, in which pulses are trapped at both
sides of bump domain, but one of them shows the oscillatory
motion. The details of unidirectional behaviors will be dis-
cussed in Sec. III. The above findings suggest that an asym-
metric heterogeneity with variable height (or width) can play
the role of a dynamical transition that depending on its state
selects the direction of possible pulse propagation. As men-
tioned in our previous paper, the ODE reduction method is
not limited to the symmetric case; the analysis for the asym-
metric case can be done in a parallel way. We now want to
see what happens when such an asymmetry is present, focus-
ing on understanding not only the process that leads to
pinning—depinning transition but also the bifurcation pictures
that lead to unidirectional behaviors of pulses.

B. Reduction to ODEs

The pulse dynamics in heterogeneous media can be re-
duced to a finite-dimensional one when the associated pa-
rameter values are close to the drift bifurcation of k;=kf{,
namely, the pulse velocity is slow [45,48-51]. Considering
the original PDE of Eq. (1) in a neighborhood of k;=k{, with
new parameter 7 such that k;=k{+ 7,

u,=Du,, + Flu;k;(x)]= L(u;:k) +[n+ ex(x,d)]g(u),
t>0,x e R, (3)

where g is N-dimensional vector-valued functions. For our
system (1), g=(1,0,0)". Let X:={L>(R)}", u=(u,, ..., uy)’
€X be an N-dimensional vector, D=diag(D,,...,Dy),
F:RY—R", and x(x,d) be a C' function. We assume that
there exists a k;=k{ such that the nontrivial standing pulse
solution S(x;k;) of Eq. (1) exists, i.e., £(S;k{)=0.

Let L=L'(S;k{) be the linearized operator of Eq. (3) with
respect to u at u=S(x,k{). L has a singularity at k;=k{ con-
sisting of drift bifurcation in addition to the translation-free
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FIG. 2. (a) Phase diagram of ODE dynamics for the asymmetric case of (%, 9%)=(50,100). There are 11 type behaviors: those phase
boundaries are indicated by solid lines. The dotted lines correspond to the Hopf bifurcation lines for the equilibrium points. (b) Phase
diagram of PDE dynamics for the asymmetric case of (y%,9%)=(100,1000). (c) Schematic picture of initial condition for asymmetric
heterogeneous bump case. Solid line shows how k;(x) changes in spatial direction, and gray line displays a manner how a traveling pulse hits
a small defect created by the heterogeneity for the first (fourth) quadrant of d>0 and €> (<) 0 named as case I (bump) [case IV (dent)].
The k;(x) manner in the negative d region looks just like a left-right flip type of d>0.

zero eigenvalue. That is, there exist two eigenfunctions ¢(x)
and (x) such that L$p=0 and Liy=—¢, where ¢p=43S/dx.
Note that ¢(x) and (x) are odd functions. ¢/(x) represents
the deformation vector with Jordan form for the drift bifur-
cation. Similar properties also hold for L*. That is, there exist
¢* and * such that L*¢*=0 and L*f'=—¢*, where ¢*(x)
and ¢“(x) are odd functions. Let E=span{¢,y} and the
eigenfunctions are normalized by (¢, d)=(i,y)=0 and
(b, 4)=1.

The movement of a pulse solution u is essentially de-
scribed by the scalar functions p(z),q(t); p denotes the loca-
tion of pulse and ¢ for its velocity. For small € and 7, we can
approximate a solution # by

U=S(x-p)+qPx—p)+q*{i(x—p) +gnly(x—p),
(4)

where the remaining terms {;,l, € E* are defined by L{,
+F"(S)y?/2+,=0 and L{,+g(S)=0. Substituting Eq. (4)
into Eq. (3) and taking inner product with ¢* and ", we
obtain the principal part by the following system:

p=q—€ly(p,d),

G=M,q’ + Mygn+ €l (p.d), (5)

where

My =(F"(S)ih- {1, ")+ o(F m (S)4, ™) + (0,41, &),
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FIG. 3. Orbit flows in (p,q) space for d=+0.10 are depicted in (a) for phase boundary between REB3 and STA1 around €= 0.357 near
point A in Fig. 2(b), (b) for transition from OSCI to REB4 around €=~0.061 near point B, (c) for transition from REB4 to PEN around e
~0.050 near point C, (d) for transition from PEN to REB2 around e~—0.067 near point D, and (e) for transition from REB2 to OSC3
around €= -0.274 near point E. The solid and open circles indicate the stable and unstable stationary states, respectively.

My =(F"(S)¢- &5, ") + (Lo, ") + (&' ()b, d"),
and

o

Lop.d)= |  x(x,d)g[S(x—p)]- ¢ (x - p)dx,

—o0

I'y(p.d)= f x(x,d)g[S(x—=p)]- ¢*(x=p)dx.  (6)

Here the coefficients M,;,M, and heterogeneous term
I'y(p.d) depend on the model system and influence a lot over
the dynamics. The effect of heterogeneity becomes accelera-
tion (deceleration) when €el’;> (<) 0. For our system (1)
with k{=~-6.79, they are computed as M;~-11451<0 and
M,=0.031>0 from the profiles of eigenfunctions and pro-
files of I'; are obtained numerically as in Figs. 5(a)-5(c). A
more complete treatment was shown in [45].

For the homogeneous case of €=0, the dynamics is re-
duced to study a single equation of second order independent
of p. The equilibrium point £, of g=0 corresponds to the
standing pulse solutions and E; given by g= = \-M,7/M,
for >0 correspond to the right- and left-going traveling
pulses. As 7 is changed from negative to positive, the drift
bifurcation occurs and E2i of ¢ # 0 bifurcate from E; super-
critically.

Since we are interested in the regime in which stable trav-
eling pulses exist, we employ 7n=+0.29 for definiteness, i.e.,
KR=k{+ 7 is set to —6.50. We will use this value throughout
this paper, which implies that Ezi of g is =+8.8X 107 It
should be noted that the results in the sequel are also valid
for smaller >0. Since I'; converges to 0 as p— * o, the
orbit converges to either E; or E, as t— in a far field
depending on the sign of ¢(0). In fact, the far-field limit of
Eq. (5) is given by its second equation without the I'; term
equivalent to the homogeneous case. The issue is to study the
fate of the orbit starting from Ej at p=—o° for a given bump
heterogeneity. When it goes to E; (E;) as p— +, it means
that the pulse penetrates (rebounds from) the bump. Depend-
ing on the width and the height of the bump, the orbit could
be trapped by one of the pinning states around the bump as
will be discussed in Sec. II C. In general what we have to do
is to find a heteroclinic connection (in a generalized sense)
starting from E at p=—c.

C. Typical flows of ODEs and the symmetry of heterogeneous
function

The issue here is to study the fate of the orbit starting
from E; at p=— for a given bump heterogeneity. As it is
expected, penetration occurs when the difference |¢| is small,
i.e., pulses can go across the bump. We find up to 11 distinct
regions in the phase diagram with four different types of
fundamental behaviors, depending on the width d and the
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FIG. 4. Orbit flows in (p,q) space for d=-0.10 are depicted in (a) for transition from STAI to REB1 around €=0.124 near point F in
Fig. 2(b), (b) for transition from REB1 to PEN around e~ 0.047 near point G, (c) for transition from PEN to OSC2 around e~ -0.073 near
point A, and (d) for transition from STA2 to REB2 around e~ —0.182 near point /. The solid and open circles indicate the stable and unstable

stationary states, respectively.

height € of the heterogeneity. The fundamental types of be-
havior for a single pulse include penetration of the heteroge-
neity (PEN), stationary (STA), and oscillatory pinning (OSC)
of the pulse at the heterogeneity and reflection (rebound) of
the pulse at the obstacle (REB). Detailed results for the re-
duced ODE dynamics are shown in Fig. 2(a), which reflects
the original PDE dynamics quite well [see Fig. 2(b)]. The
comparison between the ODE and PDE phase diagrams for
the collision dynamics between pulse and defect in Fig. 2
shows good qualitative agreement. Note that the asymmetry
of the heterogeneities breaks the d——d symmetry found
earlier for symmetric heterogeneities (see Remark II.1). Fig-
ures 3 and 4 show all the cases of orbit flows on the phase
boundaries marked by the characters (A-I) in Fig. 2(a).
Most parts of the diagram still have the look of those for
the symmetric cases of Fig. 7 in [45]. What is expected after
the penetration for d >0, as € is decreased for the situation of
case I—bump in Fig. 2(c)—is that some sort of rebound by
the second collision with the steep side. On the other hand,
for e<0 for case IV—dent situation—the onset of the
pinning—depinning transitions dominates the dynamics,
hence the trapping inside the bump occurs. However, the
steepness of the right side greatly also influences the pulse
behaviors and there are still several qualitative differences
from the symmetric case. One is that rebound behavior
(REB4) is observed between PEN and OSC1. The REB4
region is embedded in PEN region because right-going pulse
passed the moderate left side will face the right side: if the
right side is the same moderate slope as the left one, pulse
will penetrate the bump just as the symmetric case; if the
right side slope is steeper, pulse will rebound. Figures 4(b)
and 4(c) show us the orbit flow for the transitions from
OSCI to REB4 and from REB4 to PEN. An asymmetric
heterogeneity breaks the reflection symmetry around the ori-
gin and, hence, the depinning mechanism subject to asym-
metry causes qualitative differences to the symmetric cases.
In particular, this REB4 phase is crucial to the rectification

behavior of pulses of Fig. 1(b), as will be discussed in Sec.
IIT A. We note that, when d=0, i.e., y(x,0) is not a zero,
there are small defects around the origin and the translational
invariance is broken, so we cannot always observe penetra-
tion behavior unlike the symmetric case. As |€| is increased,
the behavior depends on the sign of €. More detailed analysis
of ODE:s allows us to explain all the dynamic transitions in a
precise way. In fact, it turns out that scattors and their stable
and unstable manifolds play a crucial role for our purpose as
shown in Figs. 3 and 4.

Remark II.1. Here, unlike the symmetric case, we also
explore the parameter space for the negative d region. As
shown in Fig. 2(c), in the positive d region of Fig. 2(a), the
right-going pulse coming from p=-c collides firstly moder-
ate side of bump. The first quadrant of €>0 is the bump case
and the forth quadrant is the corresponding dent case of €
< 0. Remind that the asymmetric heterogeneity used here
holds the relation of y(—x,—d)=—x(x,d). In the negative d
area of the phase diagrams of Fig. 2, the orbit collides first
steep side of bump. The third quadrant of <0 to the flip-
bump case as shown in Fig. 2(c) and the second quadrant of
€>0 correspond to the corresponding flip-dent case. Substi-
tuting it into the integral forms of Eq. (6), we can easily
obtain the relation of I';(—p,—d)=I";(p,d), as required by the
symmetry of our system with respect to reflection in (p,d).
Here we use that g is constant and ¢ and ¢" are odd func-
tions. This leads us to find that the ODE dynamics with the
sign change in (-d,—¢€),

p=q+ely(p,—d),

Q=M1q3+M2QW—fF1(P,—d), (7)

is equivalent to Eq. (5) under the transformations (p,q) —
(=p,—q). This means that the exact same things happen in
both trajectories starting from E; at p=+% and from Ej at
p=-o if we make the change in variables (d, €) — (-d,—¢).
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FIG. 5. The profiles of the heterogeneity functions I'; for the asymmetric bump are shown in (a) for d=0.10, (b) for d=0.16, and (c) for
d=0.20. The dotted and solid lines correspond to I'y and I}, respectively. The asymmetry of the system induces an imperfection of pitchfork
bifurcations. By increasing the bump width d, the number of zero points increases pairwise through the saddle-node bifurcations. The black
circles indicate the saddle-node bifurcation points. When € changes its sign, the properties of the fixed points are exchanged between focus
and saddle. Bifurcation diagrams of ODE system with respect to the bump width d for €=0.055 and —0.30 are shown in (d) and (e),
respectively. Note that the narrow node regimes appear just before the focus regimes near the limiting points. The black and gray solid lines
indicate the stable and unstable foci and the gray broken and dotted lines indicate the saddle and unstable nodes, respectively.

III. RESULTS AND DISCUSSIONS

A. Heterogeneous function and bifurcation diagram for width
d

We first study the existence and stability of equilibria for
ODE system (5). The location of equilibrium point is re-
duced to find the solution of M,ey(p,d)*+M,nly(p,d)
+I',(p,d)=0. For sufficiently small € and #, the last term
becomes the leading order; therefore it suffices to focus on
the behaviors of I';. It is numerically confirmed that I'; has
three zeros for small |d| and five zeros for large |d| as in Figs.
5(a) and 5(c). The critical case occurs when the horizontal
line becomes tangent to the local minimum of I'; as shown in
Fig. 5(b), and the number of zero points of I'; is increased
from three to five via saddle-node bifurcation as d is in-
creased. For three zeros case, the middle one is located inside
the bump and the other two are outside of the bump. Note
that the I'; functions are no longer odd functions due to the
asymmetry of the bump. I'; has the largest extremum at the
steeper side of bump and smaller variation at moderate side,
which comes from the property that I',,0 as y\,0. Recall-
ing that ¢ is the velocity of the pulse, the positive (negative)
part of I'; represents acceleration (deceleration) for positive
€. Therefore, when the pulse comes from the left, the pulse
feels like small deceleration — large acceleration — huge

deceleration — small acceleration and vice versa with oppo-
site effect for negative €. Therefore the effect of the huge
deceleration region around steep side becomes visible prima-
rily as € is increased from zero, and hence rebound (REB4)
occurs instead of penetration. As € is still increased, transi-
tion from REB4 to OSC1 occurs since pulses are trapped
between large acceleration and huge deceleration regions.
Even larger €, the first small deceleration regime becomes
strong enough to push back the pulse and the transition from
OSC1 to REB3 occurs.

The stability property of equilibrium point of (p,q)
=(p,q) is determined by the following linearized system:

)= Cor smersal |0 =207)
q - 6(‘7p1-‘1 3M162F%+M277 q q '

(8)

(p.9)

The eigenvalue problem LW=AW can be solved easily as
N=3(tr(L) = \tr(L)>~4A),  where t(L)=3M,€T3+M,y
—€d,I'y and A=—€d,I'(3M,€T5+M,7)—€,I';. The associ-
ated by  (2,tr(L)
+2ed,I'y* Vtr(L)2=4A). For small 7 and €, the principal
parts of the trace tr(L), determinant A, and discriminant

eigenvectors W are  given
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tr(L)2—4A are given by M,7— ed,l'y, —€d Iy, and 4ed,I';
respectively. It is clear that the derivatives of I'; at zero
points are crucial for stability.

In a view of the profiles of I'; as depicted in Figs.
5(a)-5(c), especially the sign of the derivatives at the zero
points of I';, stability and bifurcation diagram with respect to
the width d at each equilibrium point can be computed as in
Figs. 5(d) and 5(e). For the symmetric case y*="* we have
the usual pitchfork bifurcation as shown in Fig. 9 in [45]
since there is a reflection symmetry with respect to p=0.
After introducing the asymmetry, the pitchfork bifurcation
points are replaced by their imperfection as shown in Figs.
5(d) and 5(e) with d being the bifurcation parameter and the
above reflectional symmetry is lost; nevertheless the bifurca-
tion structure still keeps the symmetry under the transforma-
tion (d,p) — (—d,—p) except stability properties. We remark
here that y(x,0) becomes an odd function when 7y, # .
There are four zero points in I';(p,0), thereby the various
pulse behaviors besides penetration occur for very small |d|
unlike the symmetric case of x(x,0)=0 as in [45].

We label each branch as in Figs. 5(d) and 5(e) and thereby
LCE is an abbreviation of left-center-equilibrium and simi-
larly for other equilibria. Due to the imperfection, there ap-
pear two special branches center-left-equilibrium (CLE) and
center-right equilibrium (CRE) that have no bifurcations at
all; therefore, for instance, CLE remains as unstable focus
for all d when e is positive and similarly for other cases as
depicted in Figs. 5(d) and 5(e). Note that these two fixed
points always locate at the steep side of bump, and the re-
maining part of the imperfection appears via saddle-node bi-
furcations on the moderate side of bump with labels LCE
and right-center equilibrium (RCE). These saddle-node bifur-
cations around |d|=0.16 are associated with the critical case
of four zero points of I'; as in Fig. 5(b). Near this critical
case, the transition from saddle (gray broken) — node (gray
dotted) — spiral (gray solid) or vice versa is observed along
the saddle-node bifurcation branch, although the node re-
gime is very narrow compared with others [not visible in
Figs. 5(d) and 5(e)]. This is a consequence of the fact that a
real eigenvalue must pass through the origin at the limiting

point. Recall that the dominant term of discriminant tr(L)?
—4A is given by 4€d,I';. The asymmetry of global bifurca-
tion structure is strongly responsible for the onset of unidi-
rectional behaviors as will be discussed in Sec. III B, in
which we study the global behaviors of branches with re-
spect to € including Hopf ones.

B. Bifurcation diagram for bump height € and onset of
rectification behavior

In this section we study the global bifurcation diagram of
ODE system (5) with respect to € with d being fixed to be
0.10 unless otherwise mentioned. Note that the number of
equilibria of Eq. (5) for d=0.10 is 3. Figure 8(a) shows the
global bifurcation diagram for those equilibria as e varies.
There always occurs Hopf bifurcation along each equilib-
rium for either positive or negative € side depending on the
sign of d,Iy. All the Hopf bifurcations are supercritical and
hence stable limit cycles are observed at least locally. The

PHYSICAL REVIEW E 79, 046205 (2009)

black and white circles depict the minimal and maximal po-
sitions of limit cycle in p coordinate, which correspond to
oscillatory pulses for the original PDE. At first let us con-
sider the positive € region. The Hopf branch emanating from
CLE grows and only the minimal position approaches left-
equilibrium (LE) in the form of homoclinic bifurcation at €
~0.0596, which is different from the symmetric case [45,46]
that the limit cycle grows into the heteroclinc orbit connect-
ing LE and CRE as € is decreased. It should be noted that a
saddle-node bifurcation occurs for this Hopf branch before

homoclinic point to LE. The reason is first tr(L)=~M,7
—€d,I'y becomes positive at LE in view of the profile of I'; in
Fig. 5, and hence the resulting periodic orbit close to the
homoclinic one must be unstable; on the other hand, the
Hopf branch is stable near the onset due to its supercritical-
ity. Therefore the Hopf branch behaves globally as depicted
in Fig. 8(a). What are the implications of this global behav-
ior? Two important outcomes are derived from this observa-
tion: one is a rectification phenomenon and the other is uni-
directional pinning—depinning transition. Rectification shows
a one-way traffic from right to left, namely, the left-going
pulse can penetrate the bump, but right-going one bounces
from it. Right after the Hopf bifurcation, the orbit is attracted
to the limit cycle as in Fig. 6(a) (upper left). The transition
from oscillatory behavior (OSC1) to rebound (REB4) occurs
around €= 0.0607 when the orbit crosses the stable manifold
of LE [dotted line in Fig. 6(a)]. In other words, the stable
manifold of LE approaching from right-below direction
plays a scattor for this transition. This must occur before the
homoclinic bifurcation event since the pulse orbit is not able
to access the stable limit cycle at the homoclinic point [see
Fig. 6(a)]. On the other hand, it is clear from Fig. 6(a) that
the pulse coming from the right must penetrate to —o°, which
shows the rectification, namely, only the pulse coming from
the right (i.e., steeper side) can go across the bump. As for
the pinning—depinning transition, oscillatory trapped pulse
corresponds to the stable limit cycle, and this stable one dis-
appears (i.e., depinning) exactly at the saddle-node point of
this Hopf branch depicted in Fig. 8(a). The PDE counterpart
of LE is numerically confirmed and it should be noted that
the similar type of bifurcation occurs for the PDE system as
shown in Fig. 7: periodic branch bifurcated from the CLE
standing pulse approaches into homoclinic orbit to LE as € is
decreased. To compute the global branches of periodic solu-
tions, we introduce the period T as a time-scaling parameter
of the system and let ® be the solution of Eq. (1) at time T
starting from the initial value u,. We set R=®—u, and solve
the following linearized system:

Auo R(uo,TJCI)
I(R.S,N)(u.T.k) AT | =—| S(ug.T.ky)
=- 045/ s
8u,T,k u
1 oTk\ Ak, N(u,T,ky)

9)

where S and N are the conditions for the phase pinning and
pseudoarc length condition under parameter k; variation (see
references in [52-54]). Here the problem of finding periodic
solutions and their bifurcation branches can be formulated as
a periodic boundary value problem of R=S=N=0 on a fixed
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FIG. 6. (a) The schematic orbit flows near the phase boundary between OSCI and REB4 near point B from left-top to right-bottom
pictures by decreasing €. The gray solid and broken lines indicate the orbit from E}(p=-%) and stable manifold of LE, respectively. The
latter plays a role as scattor between OSC1 and REB4 behaviors. As € is still decreased, the homoclinic orbit to LE appears and its unfolding
emanates the unstable limit cycle, which disappears with stable one via a saddle-node bifurcation. The solid and dotted circles indicate stable
and unstable limit cycles, respectively. (b) The gray solid and broken lines show the stable and unstable manifolds of LE at e=0.0607,
respectively. The homoclinic orbit and the orbit from Ej(p=-%) at €~0.0596 are indicated by the black broken and gray solid lines in (c).

period 7. Unfortunately, a saddle-node point should appear In this way, the asymmetry of our system leads to unidi-
before homoclinic to LE; however the continuation is being rectional orbit flow to E; of RECTI resulting in a rebound
stopped before it as T o in Fig. 7(c). (REB4) coming from p=—x and a penetration coming from
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FIG. 7. (a) The profiles of scattor (top) and the associated eigenfunction (bottom) for €= 0.0625 near point B with A =0.0283. The solid,
gray, and broken lines represent «, v, and w components, respectively. (b) Spatiotemporal pattern for e~0.0297 with T=451. The periodic
orbit spends most of time around the saddle point of LE and approaches into a homoclinic orbit. Global bifurcation branch of limit cycles
with respect to the bump height € for d=+0.0625 is shown in (c). The inset figure shows the associated inverse temporal period of limit
cycles.
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FIG. 8. Global bifurcation diagram of ODE system with respect
to the bump height e for d=+0.10 is shown in (a). The white square
indicates the Hopf bifurcation points. The black and white circles
indicate the stable and unstable limit cycles, respectively. The hori-
zontal broken lines indicate the homoclinic bifurcations for the limit
cycles. The black and gray solid lines indicate the stable and un-
stable foci, respectively, and the dark gray broken line indicates the
unstable saddle. The additional characters (A-I) correspond to those
marked on the phase boundaries in Fig. 2(a). The five-pointed stars
indicate the scattors observed at the phase boundaries. (b) Phase
diagram for the unidirectional behaviors in the presence of an asym-
metric heterogeneity. Right-going (left-going) pulse hits first mod-
erate (steep) side of bump as depicted schematically in (c). There
are seven different unidirectional behaviors indicated by gray color.
The dotted lines correspond to the Hopf bifurcation lines for the
critical points.

p=+ as shown in Fig. 9(c). The same thing happens in
PDE dynamics as in Fig. 1(b). It looks trivial that, when € is
still decreased, pulses can go across the heterogeneity in bi-
directional manner. Let us look carefully at the behaviors
near the transition to bidirectional penetration (biPEN). In
view of Fig. 4(c), the transition from REB4 to PEN coming
from E;(p=-=) is responsible for that from RECT]1 to bi-
PEN, i.e., the stable manifold of CRE point plays a role as
separator among them.

C. Unidirectional flows and scattors

The bidirectional and unidirectional behaviors are classi-
fied as in the phase diagram of Fig. 8(b), depending on two
parameters (d,e). There are six different bidirectional
outputs—bipenetration (biPEN), birebound (biREBI, bi-
REB2), and bistationary (biSTA1, biSTA2), and bioscillatory

PHYSICAL REVIEW E 79, 046205 (2009)

(biOSC) states—as well as seven unidirectional outputs—
rectification (RECT1, RECT2, RECT3), unidirectional pin-
ning (unPIN1, unPIN2), and unidirectional oscillatory (un-
OSC1, unOSC?2) states. Note that the diagram of Fig. 8(b)
can also be produced as the superposition of the diagram of
Fig. 2(a) and its 7 rotation. According to Remark II.1, our
system is invariant under the transformations (d,€) — (—d,
—e€), so it suffices to consider the positive d space as in Fig.
8(b). We indicate the phases of unidirectional behaviors in
gray and the bidirectional behaviors in white. The typical
unidirectional behaviors for d=0.10 are depicted in Fig. 9. In
this section, we focus on the nature of dynamic transition
among these states captured in the bifurcation diagram of
Fig. 8(a).

As it is expected, the biPEN behavior occurs when |¢| is
small, i.e., pulses can go across the bump heterogeneity. By
increasing €, the rectification behavior RECT1 of Fig. 9(c)
appears for small € as described in Sec. III B. As € is still
increased, the unOSC1 region appears, which is very narrow
compared with the others [not visible in Fig. 8(b)]. Similar
dynamics is observed for the PDE dynamics as in Fig. 1(b).
The stable manifolds of LE and CRE play a role as scattors
for the transitions from biPEN and to biOSC, those are indi-
cated as the five-pointed stars at B and C in Fig. 8(a), respec-
tively. The unOSCI1 dynamics is shown in Fig. 9(b), where
the right-going pulse could be trapped by the oscillatory state
around CLE. Due to the type change in global bifurcation
from heteroclinic to homoclinic, the two unidirectional be-
haviors emerge between the bidirectional behaviors of bi-
PEN and biOSC. In particular, the (d,€) region where
RECT!1 behaviors are observed coincides with the REB4 re-
gion in Fig. 2(a).

When € changes its sign, there is an another rectification
behavior of RECT2 which direction is reversed to Ej(+%),
left-going pulses rebound at the flip dent of case II, however
right-going pulses could penetrate the dent of case IV. Figure
9(d) shows the corresponding behavior near point L in Fig.
8(b). The PDE counterpart has already been depicted in Fig.
1(c).

The asymmetry of the system results in the symmetry
breaking of critical point distribution as well as the geometry
of their manifolds. The phase boundaries of RECT2 region
are dominated by the scattors associated with those obtained
near points D and G as indicated in Fig. 8(a). The scattor of
transition from biREB2 to RECT2 is the upper-left stable
manifold of LE, which is the same as that obtained at the
transition from PEN to REB2 at point D in view of Fig. 3(d).
As € is still decreased, this stable manifold is also respon-
sible for the transition from RECT2 to biPEN, which is as-
sociated with that of CRE at point G as indicated in Fig. 4(b)
for case III. Here the CRE in case III could be replaced into
LCE in case I under the transformations (d,p)— (-d,—p).
Therefore the stable manifold of CLE in case I is the scattors
for both transitions as shown in Fig. 10(a) (A). The position
of middle fixed point glides right due to the imperfection of
the bifurcation structure of Fig. 5, and then there occurs a
gap of the e value where the orbit from the left (right) end
meets the upper-left (lower-right) stable manifold of CLE.
When the system recovers the symmetry, the situation
changes dramatically because the CLE scattors are merged
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FIG. 9. Unidirectional ODE flows in the presence of asymmetric heterogeneity are associated with the PDE behaviors shown in Fig. 1.
The solid and broken lines indicate the orbit flows starting from E; at p=F o, respectively. The unidirectional pinning behaviors of (a)
unPIN1consist of STAI from the left and REB2 from the right occurs around (d, €)=(0.10,0.30) near point J in Fig. 8(b), (b) unOSC1 of
OCS|1 and PEN around (d, €)=(0.10,0.07) near point K. The two rectification behaviors are obtained as (c) RECT1 consists of REB4 from
the left and PEN from the right around (d, €)=(0.10,0.055) near point K and (d) RECT2 of PEN and REBI for (d,€)=(0.10,—0.055) near
point L. There are the other unidirectional pinning behaviors for negative €, (¢) unPIN2 consists of REB2 from the left and STAI from the
right around (d, €)=(0.10,-0.25) near point M. (f) unOSC2 of OCS3 and STA1 around (d,€)=(0.10,-0.30) near point N. The solid and
open circles indicate the stable and unstable stationary states, respectively.

into one point of center-equilibrium (CE) as in Fig. 10(a) (B)
and the unidirectional behavior of RECT?2 disappears. In this
way, the rectification phases are observed for a window of
small € values until a critical value of € is reached resulting
in bidirectional pulse penetration, as |€| is decreased. Only
with the inversion of the propagating direction, the same
thing happens to RECT3 region for small d. Note that tran-
sition from biREB2 to biPEN occurs at a connecting point of
RECT?2 and RECT3 regions, in which the stable manifolds
of CLE play a role as scattors simultaneously.

For large positive €, the unidirectional pinning behavior
of unPIN1 is observed, where the left-going pulse coming
from p =+ rebounds from the flip bump of case III and the
right-going pulse coming from p=-% could be trapped by
the pinning state of STA1 around the steep side of bump. The
overall dynamics is shown in Fig. 9(a). This unidirectional
flow is also caused by the positional change between the
scattors and the orbits starting from both ends under symme-
try breaking of the system. The fates of unPIN1 orbit flows
are sorted out along the unstable manifolds of CRE at points
A and [ in Fig. 8(a). Since the stable manifold of CRE is a
basin boundary, any trajectory starting from p=+ leads to

rebound from it. Hence, the basin of attraction for stable
CLE is not accessible from the steep side of bump.

The other unidirectional pinning behaviors of unOSC2
and unPIN2 are due to the positional relation of Hopf and
homoclinic bifurcation points for negative € in Fig. 8(a), i.e.,
the global branches of periodic solutions play a key role in
understanding the onset of these behaviors. There are two
supercritical Hopf bifurcations from below. The coexistence
of the different slope influences the Hopf point locations
among both side critical points. In view of the profiles of the
heterogeneous functions I'; in Fig. 5(a), since tr(L)~=~M,7y
-€3,I'y=0 and tr(L)*~4A ~=4el'; <0, the Hopf point of the
moderate side LE is smaller than that for steep side CRE.
Thus, the LE critical point at moderate side first undergoes a
Hopf bifurcation around e=-0.315 that produces pinning
behavior to oscillatory motion. Figure 9(f) shows the un-
OSC2 behavior near point N in Fig. 8(b), where one de-
scribes the trajectory of oscillatory trapping around LE and
the other describes the trajectory to stationary pinning to
CRE. Similar dynamics is also observed for PDE dynamics
as depicted in Figs. 1(d) and 1(e). As € is still increased, the
amplitude of this limit cycle increases leading to a ho-
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FIG. 10. (a) The schematic orbit flows explain how the asym-
metric critical point distribution changes the orbital relations to
scattors and causes the RECT2 behaviors between bidirectional be-
haviors as in (A). As € is decreased from top to bottom pictures;
there appear two scattors located at CLE point for transitions from
biPEN to RECT2 and from RECT2 to biREB, respectively. They
correspond to the scattors obtained near points D and G in Fig. 8(a),
respectively. When the system recovers the symmetry, they are
merged into one scattor like (B) and the rectification behavior dis-
appears. (b) The schematic orbit flows near the phase boundary
between unPIN2 and biREB2 from left-top to right-bottom pictures,
corresponding to the homoclinic bifurcation near point F in Fig.
8(a). A homoclinic orbit to saddle E; belongs to the intersection of
unstable and stable manifolds of E;. An unstable limit cycle (dotted
line) appears from the homoclinic bifurcation and it disappears with
the stable one by saddle-node bifurcation, as € is increased. The
black and white circles indicate the stable and unstable equilibrium
points, respectively. (c) Global behavior of periodic branch around
CRE point is magnified near point F in Fig. 8(a). The limiting point
of the limit cycle locates at e=~—0.109. The inset figure shows the
associated inverse temporal period of limit cycles.

moclinic orbit via a saddle-node bifurcation at e=~-0.274.
This bifurcation at point E in Fig. 8(a) generates the rebound
behavior of pulses coming from E3(-%) and then leads to
transition from unOSC2 to unPIN2.

Another homoclinic bifurcation of limit cycle at the steep
side is responsible for the transition from unPIN2 to biREB2
behaviors. The limit cycle emanated from the Hopf point of
CRE around —0.114 grows and terminates in homoclinic bi-
furcations via saddle-node points at e=~-0.124. The sche-
matic orbital behaviors near the transition are depicted in
Fig. 10(b). Near point F in Fig. 8(a), the trajectory coming
from E;(+%) rebounds from the flip dent of case II, in which
unstable periodic branch blocks the entering of the orbit into
the inside attractors. Qualitatively similar dynamics has been
discussed in Fig. 12(c) in [45]. As € is still increased, there-
fore, the unPIN2 region terminates in a homoclinic bifurca-
tion at the steep side.

PHYSICAL REVIEW E 79, 046205 (2009)

The reduced ODE dynamics shown in Fig. 9 almost com-
pletely describes the PDE behavior depicted in Fig. 1. A
remarkable feature is that the types of unidirectional behav-
iors are not only uniquely determined by the shape of the
asymmetry (i.e., by the fact which side of the slope is
steeper) but also by the height and the width of the bump
heterogeneity, in which we discussed here three types of the
onset of the unidirectional behaviors from the global bifur-
cation picture. The first is due to the asymmetric distributions
of critical points, i.e., the imperfection of the bifurcation
structure changes the orbital relations to the associated scat-
tors. The second is that the change from heteroclinic to ho-
moclinic bifurcation is crucial to the onset of the rectification
behavior; in fact, there occurs two unidirectional behaviors
between bidirectional penetration and pinning behaviors.
Third, the global behaviors of oscillatory branches play a key
role in understanding the unidirectional pinning behaviors,
depending on the positional order of local and global bifur-
cation points. It should be remarked that the propagation
direction accessible to pinning state as well as rectification
could be reversed by changing the sign of e.

IV. CONCLUSION

We have studied the onset of unidirectional behaviors of
pulses as well as pinning—depinning transition in a medium
with an asymmetric heterogeneity. When such a heterogene-
ity is introduced to the model system of Eq. (1) in an additive
way, heterogeneity-induced standing pulses (called defects)
are created near the edge of the obstacle. The dynamics of
pulses near the heterogeneity is governed by the properties of
the collision process between pulses and defects. In fact, a
variety of outputs (see Figs. 1 and 2) are observed as a con-
sequence of qualitatively different collision events with de-
fects depending on the height and width of the bump. The
methodology developed in [45,46] for collision problems can
be therefore applied to our problem.

In particular the reduction from the original PDEs to a
system of ODEs allows us to study the global bifurcation
structure of the problem. Thereby, we could not only clarify
the existence and stabilities of defects induced by the pres-
ence of the heterogeneity but also demonstrate the impact of
the asymmetry on the bifurcation diagram, which is rendered
imperfect due to symmetry-breaking terms. It turns out that
such a global bifurcation structure is crucial for understand-
ing the onset of unidirectional behaviors.

We have examined the two types of unidirectional behav-
iors and identified the underlying mechanism whereby they
take place. The first is the Hopf bifurcations of defects. The
emerging limit cycles grow in amplitude and finally collide
with saddle points at homoclinic global bifurcation points.
The outcome of the interaction of pulses with the heteroge-
neities is dominated by the asymmetric distribution of scat-
tors and the positional relation between the local Hopf and
the global bifurcation point. The second aspect is the switch-
ing of connectivity from heteroclinic to homoclinic type due
to the asymmetry, which is responsible for the appearance of
the rectification behavior schematically depicted in Fig. 11.
Figure 12 shows multipulse-rectification behaviors for the
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FIG. 11. The schematic orbit flows explain how the change of type of global bifurcation causes the RECT1 and unOSC1 behaviors
between bidirectional behaviors for positive € region. (a) For the symmetric case, bidirectional oscillatory pinning (biOSC) behavior changes
into biPEN behavior via a double heteroclinic bifurcation from left-top to right-bottom pictures by decreasing €. (b) The heterogeneous
media are changed from symmetric to asymmetric; double heteroclinic loop is transformed into homoclinic one. The unidirectional oscil-
latory pinning behavior (unOSC1) and the rectification to the left (RECT1) behaviors occur between bidirectional behaviors as € is decreased
from left-top to right-bottom pictures. The lower-right stable manifold of LE plays a role of scattors at transitions from biOSC to unOSC1
and from unOSCl1 to RECT]I, respectively. As € is still decreased, the upper-left stable manifold of CRE becomes the scattor at transition
between RECT1 and biPEN [see Fig. 6(a)]. The solid (broken) lines indicate the orbit flows from Ezi (p= F ) (stable manifold of critical
points). The solid (dotted) circles show the stable (unstable) limit cycles and the white circle indicates the unstable critical points.

special case of a periodic heterogeneity consisting of four
bumps. Each domain profile is given by Eq. (2). When the
height is €=0.06, all pulses are finally rectified and travel to
the left. On the other hand, the final propagation direction is
switched by changing the sign of € [see Fig. 12(b)] and the
direction of rectification is inverted. The final form of ODEs
does not depend on the details of the model system, i.e., the
information specific to the form and parameters of the PDE
is contained in the coefficients and the form of the heteroge-
neity functions I';. The approach presented here has a great
potential for the application to a wider class of reaction-
diffusion systems and may be employed in the design and
control of new experiments.

Finally, we consider the implications of the codimension
2 bifurcation theory. We found the saddle-node structure
formed by left-left-center equilibrium (LLCE) and LCE
branches with respect to d as in Fig. 5. Recalling the Hopf
bifurcations, this implies that there may exist the Bogdanov-
Takens (BT) points at which saddle-node and Hopf bifurca-
tions occur simultaneously. According to the bifurcation con-

dition of tr(L)=A=0, such points locate at quite large e. This
indicates that the unfolding of the BT bifurcation may not be
a reasonable candidate for the organizing center for the
whole bifurcation picture. However, the other codimension 2
bifurcation can certainly be expected to occur for the sym-
metric case of vy, =7k, where we have already seen the im-
portant role played by the figure-of-eight bifurcations
[45,46]. In Appendix, we discuss the imperfection of figure-
of-eight bifurcation in more detail.
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periodic heterogeneity. (a) Four pulses are rectified to the left direc-
tion by four bump domains for €=0.06. (b) The propagation direc-
tion is reversed to the right by changing the sign of € as e=-0.04.
The other parameters are the same as those used in Fig. 1.
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FIG. 13. Attractor switching phenomenon and figure-of-eight bifurcation for the wide case of the symmetric steep bump of (¥, %)
=(100,100). (a) Orbit flows of STA3 near the attractor switching point at e~ 0.156. Slightly decreasing e, the orbits are sorted out from LCE
to RCE by the upper-left unstable manifold of CE. (b) The attractor is switched from RCE to LCE by the lower-right unstable manifold of
CE at e=~0.151. The whole structure of the limit cycles for positive € forms a surface similar to trousers. Small limit cycles around LCE and
RCE are emanated from the supercritical Hopf bifurcations at e~ 1.32. These two cycles merge into one large cycle via a figure-of-eight
bifurcation at €=(0.142. The connected limit cycle disappears by the heteroclinic bifurcations at e=~0.040. All three cycles change the
stability via saddle-node bifurcations at €=~0.145 and 0.131, respectively. (d) Log-log plot of the € values for the switching points. The
horizontal axis is €V — €™ and the vertical axis is Ae®". There occurs an infinite number of the attractor switching approaching €% into €.
The orbital behaviors near the first two switching points marked on the figure correspond to (a) and (b).
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APPENDIX: IMPERFECTION OF FIGURE-OF-EIGHT
BIFURCATION

We have considered here so far only the narrow asymmet-
ric bump, for which the heterogeneity function I'; has three
zeroes. In our previous study for symmetric wide bump, in
which five zero points are saddles and foci alternatively, we
have sketched the unfolding of figure-of-eight (double ho-
moclinic, ambiclinic) bifurcation of limit cycles and the as-
sociated characteristic behaviors of STA3 for steep slope
case or OSC3 for moderate slope case were obtained (see
references in [45,46]). Here the STA3 phase behavior for the
steep wide bump in [46] can be traced further. As € is de-
creased, the orbit approaches the upper stable manifold of
LE and it encounters transition from REB1 to STA3. As € is
still decreased, the orbital behavior changes from STA3 to

OSCl via a saddle-node bifurcation for the large limit cycle.

As depicted in Fig. 13(c), no limit cycles are left above
the limiting point at €=~ 0.145. Two stable foci of LCE and
RCE can be expected to be attractors of STA3. Actually,
there occurs attractor switching phenomenon between LCE
and RCE. It is verified numerically that as shown in Fig.
13(a), the orbit from the left stays very close to CE saddle
point at €= 0.156, then it is sorted along the direction of the
unstable manifold, giving rise to attractor switching from
LCE to RCE by decreasing e. It switches again at €
~0.151 [see Fig. 13(b)], converging to LCE that switches
into RCE at €=0.149- --. The fate of the orbit from the right
is also switched between LCE and RCE alternatively.

The important point is that the attractor switchings be-
tween LCE and RCE are controlled by the upper and lower
stable manifolds of CE alternatively, approaching in the lim-
iting point of €. To illustrate this behavior, as shown in Fig.
13(d), it is useful to investigate the dependence on €% — €™ of
Ae™. Notation Ae™™ is the difference between successive
switching points. As €V approaches €, converging to LCE
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FIG. 14. Imperfection of figure-of-eight bifurcation for the wide case of d=0.20 for the asymmetric bump of (*,y®)=(50,100). (a) The
gray solid and black broken lines show the stable small limit cycle and homoclinic orbit to LLCE at €= 0.364. (b) The gray solid and black
broken lines show the stable large limit cycle and homoclinic orbit to LCE at e=~0.1343. (c) The gray solid and black broken lines show the
stable large limit cycle and homoclinic orbit to LCE at e=0.122. The solid and open circles indicate the stable and unstable stationary states,
respectively. (d) The whole structure of the limit cycles with respect to €. Small limit cycles around LLCE and CLE points are emanated
from the supercritical Hopf bifurcations at €=~0.400 and 0.125, respectively. They lose the stability via saddle-node bifurcations at e
~(.353 and 0.115, respectively. The limiting point of a large limit cycle locates at e=~0.1344 and it disappears by the homoclinic bifurcation
of LCE point at e=~0.1343. [(e) and (f)] Orbit flows of biSTA1 at e~0.1345 which is close to a saddle-node bifurcation for the large limit
cycle. There remains a temporary large oscillatory motion and the orbit will converge to the stable focus of LCE.

or RCE, an infinite number of attractor switching occurs, i.e.,
an orbit pass nearby CE iteratively, and the differences Ae®™Y
are getting thinner and thinner. The scaling law of Ae™Y
~ k(¥ —€eM)3? suggests that the saddle-node bifurcation of
limit cycles is crucial to the attractor switching phenomenon,
in which the number of iterates can be estimated as N(€e™")
~(2/k)(eV—e")""2, where « is a constant [23,24,55].

For the asymmetric case with y*# 9%, the breakdown of
figure-of-eight orbit splits into a series of three homoclinic
orbits. Two foci of LLCE and CLE are stable for large €. As
€ is decreased, the supercritical Hopf bifurcations lead to the
appearance of two small limit cycles. They lose stability via
saddle-node bifurcations and then grow and collide with the
LCE saddle branch via homoclinic bifurcations as shown in
Fig. 14(d). A large limit cycle surrounding the three critical
points emerges at another homoclinic point with e=0.1343.

All branching limit cycles connecting to each homoclinic
points become unstable since d,I'; at LCE is negative, i.e.,

tr(f) >0. The three homoclinic orbits are numerically con-
firmed as in Figs. 14(a)-14(c). As seen from the figures of
Figs. 13(c) and 14(d), the question of whether or not imper-
fection is allowed which destroys a figure-of-eight bifurca-
tion must be addressed in bifurcation problems.

Figures 14(e) and 14(f) show the orbit flows starting from
E5 at p= =, in which the attractor switching phenomenon
disappears due to the imperfection of figure-of-eight bifurca-
tion. Above the limiting point of a large cycle, the orbits can
approach into the LCE point only from the direction of right-
lower stable manifold; therefore they must be directed to the
CLE point. As a result, by increasing e, transition from
biOSC to biSTA1 (to only CLE) occurs via a saddle-node
bifurcation of large limit cycle.
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